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ABSTRACT

Insufficient data volume and quality are particularly pressing chal-
lenges in the adoption of modern subsymbolic Al To alleviate these
challenges, Al simulation recommends developing virtual training
environments in which Al agents can be safely and efficiently de-
veloped. Digital twins open new avenues in Al simulation, as these
high-fidelity virtual replicas of physical systems are equipped with
state-of-the-art simulators and the ability to further interact with
the physical system for additional data collection. In this paper, we
report on our systematic survey of digital twin-enabled Al simu-
lation. By analyzing 22 primary studies, we identify technological
trends and derive a reference framework to situate digital twins
and AI components. Finally, we identify challenges and research
opportunities for prospective researchers.
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1 INTRODUCTION

Modern artificial intelligence (AI) is enabled by massive volumes of
data processed by powerful computational methods [84]. This is a
stark contrast with traditional Al, which is supported by symbolic
methods and logic [69]. The volume and quality of available data
to train Al is the cornerstone of success in modern Al. However, ac-
cessing and harvesting real-world data is a substantial barrier due to
its scarcity, cost, or difficult accessibility, hindering the development
of precise and resilient Al models. For example, in manufacturing,
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proprietary data, data silos, and sensitive operational procedures
complicate the acquisition of data [43]. Data-related barriers, in
turn, limit the applicability of otherwise powerful Al methods.

Al simulation is a prime candidate for alleviating these problems.
As defined by Gartner recently, Al simulation is the technique of
“the combined application of Al and simulation technologies to jointly
develop Al agents and the simulated environments in which they can
be trained, tested and sometimes deployed. It includes both the use of
Al to make simulations more efficient and useful, and the use of a wide
range of simulation models to develop more versatile and adaptive Al
systems” [47]. After modeling the phenomenon or system at hand,
a simulation of the model computes the dynamic input/output
behavior [77], representative of the system. A simulation produces
data, called the simulation trace, that represents the behavior of the
simulated system over time. These traces can be used as training
data for Al agents, assuming that the simulation is a faithful, valid
and detailed representation of the modeled system, and that the
simulation can still be executed efficiently and in a timely manner.

With the emergence of digital twins (DT) [54], the quality at-
tributes of simulators have improved as well. Simulators are first-
class components of DTs [36] and enablers of sophisticated services,
e.g., real-time adaptation [73], predictive analytics [62], and pro-
cess control in manufacturing [28]. These advanced services require
well-performing and high-fidelity simulators—the types of simula-
tors that align well with the goals of Al simulation.

A recent interview study on DTs with nineteen academic and
industry participants by Muctadir et al. [58] mentions that “ma-
chine learning and reinforcement learning could possibly be combined
with DTs in the future, to help to learn about complex systems (i.e.,
safety-critical systems) in a virtual environment, when this is difficult
to do on the real-world system” Similar ambitions have been iden-
tified by Mihai et al. [56] as future prospects of DTs. Indeed, the
improvements in simulator engineering that have been driven by
DTs, are generating interest in DTs for Al simulation. It is plausible
to anticipate that the next generation of Al simulation techniques
will be heavily influenced by the further advancements of DT tech-
nology [51, 66]. Therefore, it is important to understand the state
of affairs in digital twinning for AI simulation purposes, prepare
for the related challenges, and set targeted research agendas.

This work marks a step towards converging Al simulation and
DT technology. We review the state of the art on Al simulation by
DTs, derive a framework, identify trends in system organization,
Al flavors, and simulation, and outline future avenues of research.

Context and scope. In this work, we focus on Al simulation by
digital twins. We acknowledge the utility of the other direction, i.e.,
simulators of DTs being enabled by Al [55]; however, we consider
such works outside the scope of the current study.
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Contributions. The contributions of this work are the following.

e We design, conduct, and report a systematic survey of the
state of the art in Al simulation by digital twins.

e Based on the results of our survey, we derive a conceptual
reference framework to integrate (i) digital twins and (ii)
AT components for the purpose of Al simulation.

e We identify technological trends, key challenges, and
research opportunities in Al simulation by digital twins
for prospective researchers.

Replicability. For independent verification, we publish a replica-
tion package containing the data and analysis scripts of our study.1

2 BACKGROUND AND RELATED WORK

We now review the background concepts and related works.

2.1 Data challenges in Al training

The data-related challenges of modern Al are well-documented. In
their review of fifteen key challenges in Al, Hagendorff and Wezel
[49, Challenge 13] identify the problem of the acute scarcity of
labels despite labeled data being a hard precondition to many Al
systems. Obtaining data of sufficient quantity and quality can be
challenging. Data quality directly affects the effectiveness of model
training. Common data quality issues include missing data, in-
consistencies, duplications, and noise. Obtaining high-quality data
typically requires data cleaning and pre-processing. Hagendorff and
Wezel [49] consider these challenges ephemeral, i.e., technological
advancement is expected to solve these challenges in the short run.

Data enhancement techniques—such as rotating, flipping, scaling—
can be used to generate more synthetic data to extend the training
dataset [76]. The improvement of data quality is mainly realized
through data cleaning and preprocessing, including methods such
as removing duplicates, handling missing values, and eliminating
noise [46]. In addition, automated tools and algorithms can be uti-
lized to assess and monitor data quality, which can detect and fix
problems in time [40]. Regarding the optimization of data annota-
tion, in addition to the use of semi-automated tools and algorithms
to assist manual annotation methods [42, 60], crowdsourcing plat-
forms (e.g., Amazon’s Mechanical Turk [23]) can also be used for
large-scale collaborative annotation. Other alternatives are being ac-
tively researched currently, such as assisted human labeling [24, 37],
and labeling with ChatGPT [61, 71, 72].

In this work, we draw attention to the emerging topic of Al
simulation as a potential solution to these problems.

2.2 Simulation

Simulators are programs that encode the probabilistic mechanism
that represents the real phenomenon and enact this probabilistic
mechanism over a sufficiently long period of time to produce simu-
lation traces describing the real system [82].

From the ’60s, computer simulation was employed in select do-
mains by few experts until, in the ’80s, it became a key enabler in
solving complex engineering problems. In the past decade, advance-
ments in digital technology shifted the typical role of simulators
again, this time down to the operational phase of systems [30].

1https://zenodo.org/doi/lO.5281/zenoclo.13293237
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As a prime exemplification of this trend, simulators are first-class
components of DTs [36] and enablers of the sophisticated features
and services DTs provide, e.g., providing a learning environment
for training purposes of human and computer agents [52].

At the core of the simulator, the physical asset is represented
by a model, from which complex algorithms calculate the metrics
of interest. This model captures the essential properties of the
simulated asset in appropriate detail to consider the results of the
simulation representative. The execution of a simulation produces
a simulation trace, that represents the behavior of the simulated
system over time [67]. These simulation traces are the data that
can be used to train and tune Al agents.

2.3 Related work

Although our work marks the first survey on Al simulation by
DTs, the benefits of combining DTs and AI have been recognized
before. In their review of applying Al in Industry 4.0, Baduge et al.
[26] identify the integration potential of AI with DTs to enhance
the precision of DT models and iteratively refine these models
using continuously gathered data. Emmert-Streib [41] investigate
techniques that combine Al and DTs, and identify “generative mod-
eling”, roughly analogous to Al simulation, as an opportunity with
elevated potential. This underlines the importance of our work.

A related body of knowledge is the one dedicated to the opposite
direction of support between Al and DTs, i.e., Al for DTs. Yitmen
et al. [81] use AI to improve the creation of DT simulation mod-
els by simplifying their structure and functionality. David et al.
[35] propose a method for inferring DT simulation models through
deep reinforcement learning. Their evaluation shows that DTs aug-
mented with reinforcement learning facilities can efficiently learn
from the right signals. Neethirajan [59] investigates the use cases
and potentials of generative adversarial networks in the livestock
industry to generate simulation data for the development of DTs.

Multiple secondary studies on DT practices relate to our work.
Muctadir et al. [58] conduct an interview study focusing on the
trends in DT development, maintenance, and operation. Their inter-
views with 19 experts from industry and academia reveal problem-
atic areas, such as the lack of uniform definitions, tools, techniques,
and methodologies, and call for the adoption of more rigorous soft-
ware engineering practices in support of the DTs’ lifecycles. Our
study corroborates these findings at many points, as explained later.
Mihai et al. [56] survey the enabling technologies, trends, and fu-
ture prospects of DTs. A key technological prospect they identify
is the strong convergence of Al and DTs. Their leads are mostly
complementary to our focus as they sample techniques in which
machine learning “represents the foundation of a DT”. The broader
definition of Al simulation is inclusive of this direction as well.

3 STUDY DESIGN

In this section, we design a study to systematically survey the
literature on digital twins for Al simulation.

3.1 Goal and research questions

The goal of this study is to analyze the use-cases, technical char-
acteristics, and context of digital twins, used for Al simulation. To
this end, we formulate the following research questions.
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RQ1. In what domains and problems are digital twins used to
support Al simulation?
By addressing this research question, we aim to understand
the motivation for employing digital twins for Al simulation.

RQ2. What are the technical characteristics of digital twins
used in Al simulation?
We aim to understand which digital twin styles are used (e.g.,
twin, shadow, human-in-the-loop), how DTs are architected,
and which M&S formalisms are used for Al simulation.

RQ3. Which AI/ML techniques are supported by digital twin-enabled
Al simulation?
In response to this research question, we attempt to cate-
gorize and analyze various Artificial Intelligence (AI) and
Machine Learning (ML) techniques used in the research, iden-
tify the specific algorithms and methods used, and activities
along the overall ML development process that are supported
by Al simulation (e.g., training, validation, etc.).

RQ4. What lifecycle models are used in support of digital twin-
enabled Al simulation?
By addressing this research question, our goal is to under-
stand the lifecycle of Al simulation with a particular focus
on the maintenance of simulators, and whether simulated
data is validated in a specific step(s) along the lifecycle.

RQ5. What are the open challenges in DT-enabled Al simulation?
We aim to identify challenges to which researchers in the DT
and model-driven engineering communities can contribute.

3.2 Search and selection

To identify relevant studies, we employ a combination of auto-
mated search, manual search and snowballing. In the following, we
elaborate on this process. Tab. 1 reports the relevant figures.

3.2.1 Automated search. We construct our initial search string
from the topic of interest (“Al simulation”) and its explanation
(“development or training of Al or ML by digital twins” [47]):

("AI simulation") OR
(("digital twinx") AND

("trainx" OR "developx") AND

("AI" OR "artificial intelligence" OR "ML" OR "machine learning"))

Experimentation with different variations of the search string
yields a negligible amount of true positives and a substantial amount
of false positives. This is likely because Al simulation is a new,
emergent field (explains the lack of results from the second, detailed
part of the search string), and the term “Al Simulation” might not
be widely adopted in academic works just yet (explains the lack of
results from the first part of the search string).

To mitigate false positives, we use a high-level search string that
finds Al simulation studies explicitly labeled as such; and augment
the initial result set by manual search (Sec. 3.2.2) and expert knowl-
edge (Sec. 3.2.3). We use the following search string to scan Scopus,
Web of Science, IEEE Xplore, and ACM Digital Library:

("AI simulation") AND
("digital twinx" OR "digital shadowx")

20f the 499 backward references, 8 were selected for inspection by interpreting their
citation context in the data extraction phase.

?Of the 618 citations, 192 were selected via a citation-based preliminary screening.
“x calculated from the 8+192=200 studies screened by both authors.
> After clustering, only 19 newly included studies remain in this phase.
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Table 1: Statistics of the search and selection rounds

Initial search All  Excluded Included K
Automated search 4 2 2 1.000
Manual search 4
Expert knowledge 4
Subtotal 10

Snowballing1  All Excluded  Included K
Backward 558 553 5 (0.90%)
Forward 90 86 4 (4.44%)
Subtotal 648 639 9(1.39%) 0.840

QA1 All  Excluded Retained
Subtotal 19 7 —12(1.82%)

Snowballing2  All Excluded  Included K
Backward? 499 494 5 (1.00%)
Forward® 618 601 17 (2.75%)
Subtotal’ 1117 1095  22(1.97%) 0.662

QA2 All  Excluded Retained
Subtotal’ 19 9 —10(0.89%)
Final 1775 1753 —22(1.24%)

As reported in Tab. 1, the automated search finds 4 primary
studies. The search strings yields 4 primary studies on Scopus, 5 on
Web of Science, of which 6 remain after duplicate removal, and 4
after removing two patents. After screening, we tentatively retain
2 primary studies, subject to further quality assessment.

3.2.2  Manual search. Based on our expert knowledge, we identify
key venues (conferences and journals) and search for potentially
relevant studies in the past five years (2019-2024). Specifically,

e we scan top Al conferences for studies on DTs (IJCAL ICML,
NeurIPS, AAAL ICLR)®; and

e we scan top conferences and journals in computing, soft-
ware, and systems, related to DTs for studies about Al or ML
(MODELS; SoSyM, JSS, IEEE Software) ;

When choosing Al venues, we consider the currently top (CORE-
A*) conferences in Al Considering the conference-focused publica-
tion trends in Al, we deem this sample sufficient for our purposes.
When choosing DT venues, we rely on our expert knowledge and
the publication venues of the community-curated list of key publica-
tions by the Engineering Digital Twins (EDT) Community [39]. The
selected ones are flagship publication outlets for the DT community
(including a CORE-A conference and multiple journals).

When scanning conferences, we also consider their satellite
events, such as workshops. We scan the past five editions of each
conference, given that Al simulation is a relatively new concept
that appeared in Gartner’s glossary in 2023 for the first time.

We select potentially relevant studies by checking them against
the exclusion criteria (Sec. 3.2.5) using adaptive reading depth [64].
That is, we first check the title and abstract of the study, and if
deemed relevant, we assess whether the study merits consideration
to be included by processing the full text. We tentatively include 4
primary studies, subject to further quality assessment.

6https://ijca£org, https://icml.cc, https://neurips.cc, https://aaai.org, https://iclr.cc
7http://modelsconfelrenceorg; https://sosym.org, https://sciencedirect.com/journal/
journal-of-systems-and-software, https://computer.org/csdl/magazine/so


https://ijcai.org
https://icml.cc
https://neurips.cc
https://aaai.org
https://iclr.cc
http://modelsconference.org
https://sosym.org
https://sciencedirect.com/journal/journal-of-systems-and-software
https://sciencedirect.com/journal/journal-of-systems-and-software
https://computer.org/csdl/magazine/so

EDTConf’24, September 23-24, 2024, Linz, Austria

3.2.3  Expert knowledge. To round out the initial phase of the
search, we add studies that we are familiar with and have not been
found by the search string or manual search. Similar to the manual
search phase, we again select relevant studies by checking them
against the exclusion criteria (Sec. 3.2.5) using adaptive reading
depth [64] (first checking the title and abstract of the study, and if
relevant, scanning the full-text for details). We tentatively include
4 primary studies, subject to further quality assessment.

After this phase, the initial set consists of 10 primary studies,
subject to further quality assessment.

3.24  Snowballing. We apply two rounds of backward and forward
snowballing to enrich the corpus. The studies we include in the
second round of snowballing align well with the information from
already included studies with minimal new or unexpected findings.
Thus, we decide to conclude snowballing after two rounds.

For backward snowballing, we extract references from primary
studies manually. For forward snowballing, we follow the recom-
mendations of Wohlin et al. [80] and extract references from Google
Scholar. We automate this step through Publish or Perish [50].

In the first snowballing round, we apply an exhaustive snow-
balling strategy in which both researchers screen every study. We
observe a high kappa of 0.84 (“almost perfect agreement”). We as-
sert that the level of agreement allows for a more rapid snowballing
style in subsequent snowballing rounds. We tentatively include 9
primary studies, subject to further quality assessment.

In the second snowballing round, we apply a more agile snow-
balling strategy. In backward snowballing, we follow Wohlin [79]
and mark potentially relevant references as we examine studies
in the data extraction phase. Excluding duplicates, we eventually
mark 8 references of the total 499 as relevant. These 8 references are
screened by both researchers and 5 are included. In forward snow-
balling, one researcher conducts a preliminary screening in which
clearly irrelevant studies are excluded. Of the total 618 studies, 192
are retained for screening by both reviewers. We observe a kappa of
0.662 (“substantial agreement”), which we find satisfactory consid-
ering that we mitigated the threat of kappa inflation by excluding a
significant number of irrelevant studies. We tentatively include 22
primary studies, of which 3 are from the same group of authors
we already have in our corpus, and on the same topic. Thus, we
apply clustering and nominate one study from each cluster as the
representative primary study. Eventually, we consider 19 primary
studies after this round, subject to further quality assessment.

After each snowballing phase, newly considered publications go
through the same evaluation process as prior studies.

3.25 Exclusion criteria. We use the following exclusion criteria
to filter works that are not relevant to our study. We use these
criteria in the manual search and the snowballing rounds. A study
is excluded if it meets at least one exclusion criterion. Exclusion
criteria are evaluated based on the full reference (title, authors,
venue) and the abstract, by both authors.

E1. No or unclear DT; or the DT is not used for Al simulation.

E2. No or unclear AI/ML technique.

E3. Not DT for Al - either no link between DT and Al or the
opposite direction (AI for DT).
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E4. Other: off-topic; not English; not publicly available; secondary
or tertiary studies; full proceedings; short papers (< 5 pages).

3.2.6 Quality assessment. In accordance with the guidelines of
Kitchenham and Charters [53], we define a checklist to assess the
quality of the corpus. Quality criteria are derived from the research
questions. Each question is answered by “yes” (1 point), “partially”
(0.5 points), or “no” (0 points), based on the full text. To retain a
study, we require a score of at least 2/4 points (50%).

Q1. Digital twinning scenario clearly described.
Q2. Simulation method clearly described.

Q3. AI/ML method clearly identified.

Q4. Acknowledges limitations and challenges.

After the first round of snowballing, we assess studies included
in the initial round and first snowballing round. Of the total 19
candidate studies, we exclude 7 and retain 12 primary studies.
After the second round of snowballing, we assess studies included
in the second snowballing round. Of the total 19 candidate studies,
we exclude 9 and retain 10 primary studies.

Eventually, our corpus consists of 22 primary studies.

3.2.7 Threats to validity and quality assessment. Here, we identify
the key threats to the validity, elaborate on the mitigation strategies
we applied, and assess the quality of the study.

External validity. External validity is concerned with the general-
izability of results. Our work is focusing on Al simulation through
digital twins and therefore, some takeaways cannot be safely ex-
trapolated to Al simulation in general. We mitigated such threats
by being explicit about digital twins and digital shadows in our
search strings and the manual search.

Construct validity. Our observations are artifacts of the sampled
studies. Potential selection bias and missed publications may impact
our observations and threaten the construct validity of this study.
To mitigate this threat, we employed a diverse selection process (au-
tomated search, manual search, and input from expert knowledge),
as well as snowballing until saturation [48].

Internal validity. We may have missed some works due to ter-
minology. “Al Simulation” is an emerging concept. Nonetheless,
our scope, which is specific to digital twins, narrows our search
and provides us with a sufficiently descriptive search term that
finds relevant studies. Selection bias may be present in our work
due to applying only two rounds of snowballing. However, the low
inclusion rate of 0.89% at the end of the snowballing phase suggests
that additional snowballing would yield minimal value.

Study quality. Our work scores 72.7% in the particularly rigorous
quality checklist of Petersen et al. [65]. (Need for review: 1 point;
search strategy: 2 points; evaluation of the search: 2 points; extrac-
tion and classification: 2 points; study validity: 1 point.) This quality
score is significantly higher than the typical values in software en-
gineering. (Petersen et al. [65] reports a median of 33%, with only
25% of their sampled studies having a quality score of above 40%.)
We consider our study of exceptionally high quality.

3.3 Publication trends and quality

Fig. 1 reports the basic mappings of publication trends in our corpus.
The number of publications shows an increasing trend, with a
clear increase in publication output in 2023, constituting half of the
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2018 — 1 (5%)
2019 — 1 (5%)
2020 — 1 (5%)
2021 — 3 (14%)
2022 — 3 (14%)
2023 — 11 (50%)
2024 — 2 (9%)

Publication year

Journal — 15 (68%)
Conference — 3 (14%)
Workshop — 4 (18%)

Pub.type

IEEE — 11 (50%)
Elsevier — 4 (18%)
MDPI — 2 (9%)
Other — 5 (23%)

Publisher

(a) Papers (as of June 2024)

|overaLL—636%
Q1 (DT) — 75.0%

Q2 (Sim) — 45.5%

Q3 (Al) — 90.9%

Q4 (Challenges) — 43.2%

Quality

(b) Quality scores

Figure 1: Publication trends

corpus. The relatively low number of studies in 2024 is partly due to
our study being conducted in Q2/2024 and possibly due to seasonal
variations in area-specific publication trends (e.g., timing of confer-
ences). We observe an increasing interest in Al simulation. About
68% of the sampled studies are journal articles, suggesting mature
research our analysis draws from. The high quality of the corpus is
further demonstrated by the high number of top publishers.

With that said, the reporting quality of publications (Fig. 1b)
is moderate, scoring around 63.6% overall. This is score is due
to the largely ignored details about simulation formalisms and
methods (Q2, 45.5%) and the lack of broad vision about challenges
and research recommendations (Q4, 43.2%). However, Al aspects
are particularly well-documented (Q3, 90.9%), and the technical
details of digital twinning are sufficiently presented (Q1, 75%).

Overall, we judge the corpus to be in a good shape to allow for
sound conclusions about digital twinning and Al within reason-
able boundaries of validity, but we anticipate limited leads about
simulation formalisms and methods.

4 THE DT4AI FRAMEWORK

To integrate DTs, Al, and simulation, we construct a conceptual
reference framework from the sampled primary studies. We rely on
a mixed sample- and case-based generalization [78]. This approach
is particularly useful when constructing middle-range theories that
balance generality with practicality, such as engineering sciences.
In Sec. 3, we sampled a statistically adequate corpus. Subsequently,
we decompose each study individually into architectural units as
architectural abstractions allow for better judging of similarity
between cases [78]. Finally, we identify recurring patterns.

The resulting DT4AI framework is shown in Fig. 2 and defines
the following concepts.

Al training. Interplay between the AI and the Digital Twin.

A: Query. Represents the request for data issued by the Al
component to the Digital Twin. As shown in Tab. 2, the
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Figure 2: The DT4AI framework

Query can be either explicit (the AT agent actively pulling
data) or implicit (the Digital Twin pushing data).

B: Simulated data. The result of a simulation is a simulation
trace, i.e., the data the AI component receives in response
to its Query. The Digital Twin is equipped with a model (or
set of models) M, which serves the input to the Simulator.
The A-B training cycle can take either a batch or live format.
In the former, the Trace volume is big data; in the latter, the
trace consists of small pieces of data (small data).

Data collection. Interplay between the Digital and the Physical Twin.

C: Observe. The Digital Twin is connected to the Physical Twin
through the usual data link and is able to passively observe
or actively interrogate the Physical Twin (Tab. 2).

D: Real data. Represents the data collected from the Physical
Twin. Depending on the type of the Observation, Data might
be of low context, i.e., large volumes with low information
value [34] (in case of passive observation); or of high context,
i.e., smaller volumes of data in response to active experimen-
tation. In situations when the Digital Twin gets detached
from the Physical Twin, e.g., due to the retirement of the
latter, data can be historical as well. As shown in Tab. 2, the
C-D Observe/Data cycle can be automated (scheduled by
the Digital Twin) or on-demand (based on the requests of the
AI or human operators).

E: Update. After collecting data from the Physical Twin, the
model (M) of the Digital Twin needs to be updated in order
to reflect the new data in simulations and transitively. This
Update can be achieved in a synchronous (blocking behavior
but easier implementation) or asynchronous fashion (non-
blocking behavior but more complex implementation, e.g.,
timeout and request obsolescence management).

Control and access control. Interplays between the Digital Twin and
the Physical Twin.

F: Control. As customary, the Digital Twin can control the
Physical Twin through the usual control links. As listed in
Tab. 2, control can be achieved in-place, e.g., a learned policy
on the digital side can govern the behavior of the physical
system; or (parts of) the control logic can be deployed onto
the Physical Twin for local control.

G: Access control. The Al component might interact with the
Physical Twin without the participation of the simulation
facilities of the Digital Twin. In these situations, the Digital
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Twin provides Access control to the Physical Twin. We do
not consider this case alone Al simulation by a digital twin;
however, as discussed later, direct control with the Physical
Twin can be used in combination with AI simulation, e.g., to
adapt the trained agent to a physical setting.

The DT4AI framework enables the systematic comparison and
discussion of different Al simulation approaches that enabled by
digital twins. In Sec. 5, we organize evidence along the framework
by instantiating it for the different flavors of architectures, AI meth-
ods, and simulation lifecycles we found in the state of the art.

Table 2: Variation points in the DT4AI framework

Al training
{Implicit, Explicit}
{Big data , Small data}

A Query
B Sim. data volume

Xiaoran Liu and Istvan David

Table 3: Application domains

Domain #Studies Studies
Networks 11 (50.0%)
L Wireless 8(36.4%) [2,4,5,8,9, 14,18, 22]
L, Edge 2(91%)  [6,10]
L General 1(4.5%) [7]
Robotics and AVs 6(273%)  [11,13, 15,17, 20, 21]
Manufacturing 2(9.1%) [1,19]
Energy 1(4.5%) [16]
Urban 1(4.5%) [12]
Agriculture 1(4.5%) [3]

Table 4: Architectural choices

A-B Training fashion {Batch, Live} Architecture #Studies Studies
Data collection Digital twin 19 (86.4%)

C Observe {Passive observation, Active experimenta- L, Autonomous 16 (72.7%) [1,2,4-8,10, 11, 14-16, 18, 19, 21,

tion} 22]
D Data {Stationary historical data, Low-context data L, Human-suprvised 2(9.1%) [17, 20]

update, High-context data update} L, Human-actuated 1(4.5%) [3]
C-D Observe/Data trigger ~ {Automated, On-demand} Digital shadow 2(9.1%) [9, 13]
E Update synchronicity {Synchronous, Asynchronous} Digital model 1(4.5%) [12]

Policy DT 1(4.5%) [16]

Control

F Control {In-place control, Deploy-and-Control}

5 STATE OF THE ART

In this section, we report the key results of our empirical inquiry
into the state of the art of Al simulation by DTs. Readers are referred
to the replication package for the complete data extraction sheet.

5.1 Domains and problems (RQ1)

As shown in Tab. 3, half of the primary studies we sampled focus
on a network problem. Wireless networks (8 of 22 — 36.4%) are the
most represented, typically focusing on various optimization tasks
by machine learning, such as optimization of resource allocation in
5G+ networks [22] and edge computing [5]. Robotics, including the
management of automated vehicles (AVs) accounts for 6 of 22 (27.3%)
cases, with typical examples of training Al models for the control
of ordinary [11] and underwater [20] robot arms, and controlling
the flocking motion of unmanned aerial vehicles (UAVs) [13].

The common trait of addressed problems is their high complexity
(e.g., control in dense fluid dynamics [20]) and sparse data from real
observations (e.g., in slowly changing settings of agriculture [3]).

RQ1: Domains and problems
Al simulation is primarily used in problems with high com-
plexity and sparse or inaccessible data from real observations.
Networks and robotics are the most prominent adoption do-
mains, accounting for over three-quarters of sampled studies.

5.2 Technical characteristics of DTs (RQ2)

To analyze the technical characteristics of digital twins used in Al
simulation, we rely on the superset of taxonomies by Kritzinger

et al. [54] and David and Bork [34] as our initial values. The former
defines the foundational classes of digital model, digital shadow, and
digital twin; the latter extends this classification by defining human-
supervised and human-actuated digital twins situated between fully
autonomous digital twins and non-autonomous digital shadows.

As shown in Tab. 4, the majority of the sampled Al simulation
techniques (19 of 22 - 86.4%) implement a digital twin. The cor-
responding architecture is shown in Fig. 3a as an instantiation of
the DT4AI framework. Most of these techniques (16 of 22 - 72.7%
overall) implement fully autonomous digital twins, and only a frac-
tion relies on human supervision [17] or human actuation [3]. The
rest of the architectural patterns in Fig. 3 are seldom encountered.
Digital shadows and models account for only 3 of 22 (13.6%) studies.

The instantiation of the DT classes of Kritzinger et al. [54] is
shown in Fig. 3. Experimentable Digital Twins (Fig. 3a) and Experi-
mentable Digital Shadows (Fig. 3b) implement the C-D observation
loop in an asynchronous way (dashed arrows). This is contrasted
with the synchronous input in Experimentable Models (Fig. 3b). We
observed one case in which a DT is used as a proxy to the physical
system for the AI agent to interact with [16]. In this setup, the
DT acts as a policy enforcer, hence the name Policy Digital Twin.
However, this pattern only appears in combination with a full DT.

Tab. 5 summarizes the simulation formalisms in the sampled
studies. We mostly observe network models, e.g., channel state
information [4] and topology models [10] (7 of 22 — 31.8%); models
of physics [8, 20] (5 of 22 - 22.7%); and models of geometry and CAx
models, e.g., CAD [21] and CAM/CAE [1] (5 of 22 — 22.7%). This
aligns with the high representation of network problems (Sec. 5.1).
Works that use Al models to encode the simulation model generally
do not report the modeling formalism the AI model encodes.
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Table 5: Modeling and simulation formalisms

Formalism #Studies Studies
Network models 7(31.8%) [2,4-6, 10, 14, 18]
Physics 5(22.7%)  [3, 8, 19-21]

CAD, Geometry 5(22.7%)  [1,13,17, 19, 21]
Process models 3(13.6%) [5,7,16]

DEVS 1(4.5%) [3]
Unclear (DNN:S, etc) 5(22.7%)  [9, 11, 12, 15, 22]

Table 6: DT architecture standards or reference frameworks

Standard #Studies Studies

No standard
RAMI4.0

21(955%) [2-22]
1(45%)  [1]

As shown in Tab. 6, DT architectural standards or reference
frameworks are seldom used. We found one study with a standard-
ized architecture (RAMI4.0 by Alexopoulos et al. [1]).

RQ2: Digital Twins
Al simulation chiefly runs through genuine digital twins of
the autonomous kind, but standardization is lagging behind.

5.3 Al and ML techniques (RQ3)

As shown in Tab. 7, the majority of the sampled Al simulation
techniques (18 of 22 — 81.8%) rely on some form of reinforcement
learning. Deep Reinforcement Learning (DRL, 13 of 22 - 59.1%) is
a heavily favored choice, with more value-based methods (8 of 22
- 36.4%) than policy-based (5 of 22 - 22.7%) ones. A deeper look
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Table 7: AI methods

Al #Studies Studies
RL 18 (81.8%)
L DRL 13 (59.1%)
L Value 8(36.4%) [2, 10,14, 15, 18, 19, 21, 22]
L Policy 5(22.7%) [6,8,9,11,13]
L Vanilla 5(227%) [4,7, 16, 17, 20]
DL 4(18.2%) [L,3,5,12]
TL 1(4.5%) [16]

into the details reveals state-of-the-art Al algorithms. Among value-
based deep reinforcement learning, we typically find variants of
Deep Q Networks [15]; in policy-based methods, we find algorithms
such as proximal policy opitmization [11] and deep deterministic
policy gradient [8]. The choice of Al methods is rounded out by
some approaches adopting deep learning (DL, 4 of 22 - 18.2%; e.g.,
[12]) and one case of transfer learning (TL, 1 of 22 - 4.5%; e.g., [16]).

The corresponding instantiations of the DT4AI framework are
shown in Fig. 4. Structurally, Reinforcement learning (Fig. 4a) and
Deep learning (Fig. 4a) are identical. However, there are important
differences in the interactions within the A-B learning cycle. Re-
inforcement learning establishes a live interaction, where the Al
issues frequent, short queries for small amounts of simulated data.
In contrast, in Deep learning, infrequent, often a singular query is
issued to which the Digital twin responds with big data. Transfer
learning makes use of the Physical twin, for which the Al agent
uses the Policy DT pattern discussed in Sec. 5.2. After the learning
phase, the AI interacts with the Physical twin to adapt the pre-
viously learned knowledge—either to adopt the knowledge to a
changing environment or to mitigate sim-to-real threats [83]. In
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support of this process, the Digital Twin ensures the necessary
reliability, safety, and security measures [16].

RQ3: AI/ML techniques
Al simulation is predominantly used for training purposes of
reinforcement learning agents, especially in combination with
deep learning (deep reinforcement learning).

5.4 Simulator lifecycle models (RQ4)

We aim to understand the lifecycle models along which digital twins
and, in particular, simulator components are being used and main-
tained. Unfortunately, the low attention to detail in the simulations
aspect (see Fig. 1) makes it challenging to derive in-depth insights.

In general, we observe that Al simulation is provided as a service
by the digital twin, and there is no need to detach the digital twin
from the physical twin when Al simulation takes place.

When it comes to updating and maintaining the simulators, we
find the patterns reported in Tab. 8. 11 of 22 (50.0%) sampled ap-
proaches implement a continuous, automated update mechanism.
As shown in the corresponding architecture in Fig. 5a, an automated
update mechanism implements the C-D loop using Passive observa-
tion, to which the response is voluminous Low context data which
the Digital Twin has to sift through before Updating the model.

This mechanism is contrasted with on-demand techniques that
account for 2 of 22 (9.1%) cases in our sample. As shown in Fig. 5,
on-demand mechanisms respond to situations in which the digital
twin cannot provide sufficient simulated data, e.g., due to the Query
of the AI being outside the validity range of the simulator. For
example, in [18], the reinforcement learning agent asks for the
simulation of a state that the simulator has limited or no data
about. In these situations, the Digital Twin needs to sample from the
Physical Twin, either in an asynchronous (Fig. 5b) or synchronous
fashion (Fig. 5¢). In both cases, identifying missing data is the first
step, from which an Active implementation of the C-D loop follows.
Active observation is achieved by Controlling the Physical Twin
appropriately. In response, the observation provides High context
data, which is more related to the particular action the Digital Twin
has taken to sample the behavior of its physical surroundings. As
customary in synchronous modes of operation, the execution of Al
training might be Blocked until the update is complete.

RQ4: Simulator lifecycle models

Only about 60% of digital twin-driven AI simulation tech-
niques support the maintainance of the simulator’s quality
and fidelity. Most techniques implement automated, passive
data collection from the physical twin for this purpose.

5.5 Open Challenges (RQ5)

We now discuss key challenges mentioned in the primary studies.
We warn that challenges and limitations are sporadically reported
(see Fig. 1). To mitigate threats to validity, we avoid interpretation at
this point as much as possible and report only factual information.

5.5.1 Fidelity and other extra-functional properties. Obviously, fi-
delity is a key property of simulated data, directly linked to the
fidelity and accuracy of the digital twin’s simulation model [1];
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Table 8: Simulator maintenance patterns

Update  #Studies Studies

Automated  [11(50.0%) [2, 4-6, 10, 11, 13-15, 21, 22]
On-demand |2 (9.1%) [1, 18]
No update  [9(40.9%) [3,7-9, 12, 16, 17, 19, 20]

e Update

Digital Twin
C:Observe %D Real Data
| Passive S Low-cix]
Atto Async
Physical Twin

(a) Automated async. update (b) On-demand async. update

(c) On-demand sync. update

Figure 5: RQ4: Simulator lifecycle patterns (relevant compo-
nents highlighted)

but fidelity is hard to assess and ensure [14]. Shen et al. [13]
highlight the challenges involved in achieving accurate virtual repli-
cations. Sim-to-real transfer is particularly challenging, as noted
by Li et al. [8] who state that “the gap between simulation and real-
ity greatly limits the application of deep reinforcement learning in
the path planning problem of multi-UAV” Pun et al. [12] recognize
sim-to-real discrepancies, particularly when encoding simulation
models in generative adversarial networks (GANs). Among other
extra-functional properties, safety [21], reliability [5], and se-
curity [16] are mentioned. For example, reliability is a particular
concern in multi-access edge computing (also known as mobile
edge computing) [5] due to its ultra-low latency guarantees.

5.5.2 Interactions with the physical system. Shui et al. [14] warn
that the frequency of interactions between the digital and physi-
cal twin might be limited and thus, inadequate for acquiring suffi-
cient amounts of real data. Similar problems have been voiced by
Shen et al. [13]. In some cases, data might be provided by human
stakeholders [3], naturally limiting the update frequency of the
model and the quality of collected data.

5.5.3  Process aspects. In general, the transition from concept
to practical implementation of digital twins is recognized as a
complex process. Matulis and Harvey [11] voice concerns over the
complexity of real-life manufacturing settings which challenges
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deployment. Tubeuf et al. [16] mention the challenges of deploying
overly sophisticated models into real settings. Among the frequent
organizational challenges, implementation expenses and organi-
zational maturity levels are cited. Alexopoulos et al. [1] identify
development and integration as the key cost factors in their DT-
enabled Al simulation approach. David et al. [3] report mismatches
between twinning ambitions and low levels of operational maturity
from underdigitalized domains, such as cyber-biophysical systems.

5.5.4 Challenges as boundary conditions. There are challenges that
are outside of the expertise of DT and MDE experts. These chal-
lenges are to be treated as boundary conditions in prospective
projects. Multiple studies cite the elevated computational and
hardware demands of DT-enabled Al simulation. Hardware con-
straints and inadequate computing power substantially impacts Al
training, as noted by Matulis and Harvey [11]. Storage space might
be a limitation as well, especially in solutions running through
external cloud-hosted services, as discussed, e.g., by Deng et al.
[4]. Multiple studies mention the tuning challenges of Al algo-
rithms, with typical examples of finding the trade-off between
exploration and exploitation in reinforcement learning [19] and
fine-tuning the hyperparameters of deep learning [16].

RQ5: Open challenges
Challenges in DT-enabled Al simulation include both technical
(e.g., assessing and ensuring fidelity and establishing sufficient
interactions with the physical twin) and organizational kinds
(e.g., managing development processes).

6 DISCUSSION

We now discuss the key takeaways and lessons learned.

6.1 Key takeaways

6.1.1 Digital twinning brings unique benefits (and challenges) to
Al simulation. Digital twinning seems to be a useful instrument in
implementing Al simulation. As a key benefit, digital twins provide
mature system organization principles and architectures in which
the key components of Al simulation be situated—simulators as
clearly defined functional entities [68] and Al as a service through
well-defined end-points [3]. Another benefit of digital twins is
their uniquely tight coupling with the underlying physical systems,
which digital twins can observe (Fig. 5a - e.g., [2, 4]) and interrogate
upon request (Fig. 5¢-5b - e.g., [1, 18]), allowing for evolutionary
strategies of simulators. On the negative side (Sec. 5.5), fidelity and
proper lifecycle models for digital twins remain a challenge.

These demonstrated contributions to the surging Al market sug-
gest a likely increased adoption rate of digital twin technology. We
anticipate digitally adept domains to follow suit with networking
and robotics (Sec. 5.1) and adopt digital twins for Al simulation
and traditional control and governance-related purposes. Thus, the
link between digital twins and Al is shaping up to be one of the
impactful directions for digital twin researchers.

6.1.2  (Wireless) networks and robotics paving the way for DT-enabled
Al simulation. There is a clear trend in the application domains of
DT-enabled Al simulation, with networks and robotics accounting
for 17 of 22 (77.3%) of the sampled approaches (see Sec. 5.1). These
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numbers are rather unexpected after the recent cross-domain sys-
tematic mapping study on software engineering for digital twins
by Dalibor et al. [32], who do not mention these fields as frequent
adopters of digital twins [32, Fig. 5]. Granted, robotics might fit
the “manufacturing” in that classification, but the emergence of the
networking domain as a top adopter suggests a shift in tone-setters
as DT-enabled AI simulation might be growing out of domains
different from traditional digital twinning. The strong showing of
robotics might be explained by digital twinning being an already
adopted technology. The high research activity in networking seems
to be a transformative tendency, potentially due to the relative lack
of digital twinning impediments [74, Sec. 3.3] in the domain.

6.1.3 Genuine digital twins dominate Al simulation. One of the
unexpected observations of this study is the strong alignment of
the notion of a digital twin with the classical definitions Kritzinger
et al. [54]. 19 of 22 (86.4%) studies (Sec. 5.2) report a digital twin
that (i) collects real-time from a physical system and (ii) exerts
control on the physical system. This number is much higher than
in traditionally considered digital twinning domains, such as manu-
facturing, where “digital shadows” are quite often encountered. We
hypothesize that the recent surge (2022-2024) of digital twinning
in the network domain benefited from mature technologies in an
already highly digitalized domain, allowing for advanced digital
twin solutions.

6.1.4 Deep learning proliferates — and that, in different flavors. The
main observation in regard to RQ3 (Sec. 5.3) is that reinforcement
learning is particularly highly utilized (e.g., [17, 20]). We see re-
inforcement learning as a naturally good fit with twinned setups.
Reinforcement learning relies on a trial-and-error learning Markov-
ian process [70], in which digital twins can act as the supporting
technology for safe, reliable, and reproducible experiments. This
role is in line with the “risk-free experimentation aid” role of DTs
envisioned by Barat et al. [27] in techno-socio-economic systems.

Within reinforcement learning, we find a high number of deep
reinforcement learning methods (e.g., [6, 8]), that is, reinforcement
learning that encodes the policy as a deep neural network. This
number, 13 of 22 (59.1%), together with other deep learning tech-
niques (e.g., [5, 12]) amounting to 4 of 22 (18.2%) studies, means that
a total of 17 of 22 (77.3%) methods rely on deep neural networks.
Thus, DTs have to be able to provide large amounts of data, either
in small batches through rapid interactions (Fig. 4a) or as big data
at once (Fig. 4b). Both scenarios challenge extra-functional quality
metrics of DT, such as performance, reliability, and availability [16].

6.1.5 Simulation: “using the most appropriate formalisms”. The
choice of modeling and simulation formalisms aligns with the dis-
tribution of domains (Sec. 5.1). We see a number of network models
describing topologies and channel dynamics (e.g., [10, 14]), used in
network-themed studies. We see a number of physics and CAD 3D
geometry models in robotics and manufacturing-themed studies
(e.g., [13, 17]), which is in line with the observations of Dalibor et al.,
who report a high number of CAD 3D models and mathematical
physical models in their systematic mapping study [32, Fig. 11].
In some cases, however, the exact simulation formalism is hard
to identify. These are the cases in which the simulation model itself
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is encoded in a neural network, such as a deep neural network (e.g.,
[9]) or a generative adversarial network (GAN) (e.g. [12]).

6.2 Lessons learned for the DT and MDE
Communities

6.2.1 Architectural concerns. Perhaps the most important lesson
learned for the DT and MDE communities is the complete lack of
digital twin standards, architectural blueprints, and reporting guide-
lines in the primary studies we sampled. As reported in Sec. 5.2,
we found only one paper (4.5%) that relies on the Reference Ar-
chitectural Model Industrie 4.0 (RAMI4.0) [44], but even in this
sole case [1], the work failed to make a connection with the Asset
Administration Shell (AAS) [45], the standardized digital represen-
tation of assets within RAMI for digital twinning purposes. The lack
of architectural standardization is particularly concerning in cases
when legacy systems are retrofitted to accommodate digital twins,
and the ramifications of system evolution are not being investigated
at the architectural level. Standards, such as the ISO 23247 Digital
Twin Framework for Manufacturing [68], hold particular potential
in this aspect and should be considered by prospective researchers.
We recommend the DT community to focus efforts on making DT
architectural standards more accessible to Al researchers for
the sake of scalable, reliable, and sustainable Al simulation.

6.2.2 Towards better technical sustainability of Al simulation by
digital twins. Technical sustainability is the ability of a system to
be used over an extended lifetime [63]. In terms of Al simulation,
prolonged usability boils down primarily to maintaining the faithful-
ness and validity of simulators. The general notion of Al simulation
does not consider this longitudinal dimension [47]. Digital twins
improve the technical sustainability outlooks of Al simulation by
construction. It is thanks to the tight coupling with its physical
environment that digital twins can support various modes of main-
taining their simulators’ faithfulness, e.g., through observing or
experimenting with the physical environment (Sec. 5.4). Recent
developments in digital twin evolution [33] provide an additional
dimension of sustainable Al simulation.

In this respect, we note a low number of techniques that imple-
ment on-demand simulator maintenance (Tab. 8), as only about 18%
of the sampled studies do so. We recommend researching so-
phisticated maintenance mechanisms and architectures (Fig.
5b-5c) in response to the anticipated demand for such features. We
warn that these efforts might be challenged by the lack of standards
which we observed in Sec. 5.2, and which is an acute issue in digital
twin engineering in general [58, Sec 6.3.3].

6.2.3 Validity and sim2real. Increasing efforts have been dedicated
to transferring the knowledge obtained in a simulated environment
to real-world applications, known as sim-to-real [38]—a potential
problem in critical systems, such as autonomous vehicles [51]. Our
investigation of the state of the art reveals that little attention
is dedicated to the sim-to-real problem in digital twin-based Al
simulation currently. (See the replication package for more detail.)

The validity of models has been of a particular interest in the
modeling and simulation community. Especially in recent years,
the traditional and vague notion of a simulation frame by Zeigler
et al. [82] has been clarified by a series of works. Biglari and Denil
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[29], Mittal et al. [57], and Van Acker et al. [75] situate validity at
the digital-to-physical boundary of digital twins, reflecting on the
validity of simulation models w.r.t. to environmental conditions,
engineering assumptions, etc. We recommend modeling and sim-
ulation experts to adopt research results on validity frames in
support of Al simulation to allow for better sim-to-real transfer.

6.2.4 Human factors in Al simulation. We observe an overall igno-
rance of human factors. This holds both for human experts in the
Al simulation loop and for human stakeholders in the development
and operation of digital twins serving Al simulation. These trends
are best exemplified in Sec. 5.2 and, specifically, in the breakdown
of system organization patterns in Tab. 4. These trends are not
entirely surprising as socio-technical views on digital twins are in
their early phase [34]. The role of the human in the loop is fully
expected to grow, e.g., in training the virtual replicas [58, Fig 7],
and guiding AT agents in their learning phase [31]. With that, we
recommend digital twin experts to adopt more human-centered
views on digital twins, both in terms of the human as an
interactive user of Al simulation and as a stakeholder in the
development and operation process of DTs.

6.2.5 Reporting quality and recommendations. Finally, we remark
on some quality-related trends in the primary studies in our corpus.
First of all, we notice a low level of detail in discussing the simula-
tion aspects of Al simulation (Sec. 3.3). This is a severe shortcoming,
considering the central role of simulation in these approaches. The
lack of detail about simulation is especially concerning, given that
the validity of simulation models is the primary factor that deter-
mines the validity of data that is generated for training Al agents.
We recommend prospective researchers to be more detailed and
transparent about simulation formalisms, methods, algo-
rithms, and tools when reporting their work. This will allow for
independent validation and reproduction of results.

We also note the staggering lack of support for the reproducibility
and independent validation of results. We have not found any data
supplements or replication packages despite data being the central
artifact in Al simulation. We urge methodologists in simulation
and Al to develop joint standards, and conference organizers
to introduce artifact evaluation practices, such as the ACM
Artifact Review and Badging procedure [25].

7 CONCLUSION

In this paper, we analyzed the trends in digital twin-enabled Al
simulation, and derived a conceptual reference framework to sit-
uate digital twins and Al with respect to each other. Our inquiry
into the state of the art suggests that Al simulation by digital twins
is a rapidly emerging field with demonstrated benefits in specific
problem domains. At the same time, Al simulation by digital twins
is still in its infancy, marked by limited usage of digital twin capabil-
ities, simple lifecycle models, and lacking architectural guidelines—
challenges that require active involvement from the digital twin
engineering community. To foster involvement, we identify chal-
lenges and research opportunities for prospective researchers.
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